It is shown that for every positive integer $n$ there exists a subnormalweighted shift on a directed tree (with or without root) whose $n$th power isdensely defined while its $(n+1)$th power is not. As a consequence, for everypositive integer $n$ there exists a non-symmetric subnormal compositionoperator $C$ in an $L^2$ space over a $\sigma$-finite measure space such that$C^n$ is densely defined and $C^{n+1}$ is not.
展开▼
机译:结果表明,对于每一个正整数$ n $,在有向树(有或没有根)上都有一个次正规加权移位,其有$ n $次幂被密集地定义,而其第(n + 1)$次幂则没有。结果,对于每个正整数$ n $,在$ \ sigma $有限度量空间的$ L ^ 2 $空间中存在一个不对称的次正规合成运算符$ C $,使得$ C ^ n $被密集定义并$ C ^ {n + 1} $不是。
展开▼